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PREFACE

The potential of directive satellite antennas has been investigated
as part of Rand's studies of advanced communication satellite technology
for the National Aeronautics and Space Administration. An important '
facet of these studies is the assessment of earth coverage attainable
with a given satellite, antenna characteristics, and pointing direction.
The coverage of geographic and political areas is often displayed and
examined by superposing contours of marginal radiation intensity upon
maps. The display of coverage patterns is a recurring problem generally
treated by constructing overlays conforming to existing Mercator or
cylindrically projected maps. On these maps, a unique overlay is re-
quired for almost all antenna pointing directioms.

An alternative to the construction of a large number of overlays
is to construct a map Projection (polar perspective) upon which a single
overlay (representing a beam of given angular cross section) is valid
over the entire map. The projection is virtually a picture of the earth
as seen from the satellite, and each contemplated satellite position
requires the preparation of a corresponding map. A number of such maps
were constructed and proved to be highly useful in preparing the illus~
trative example of a worldwide television system which was used in R-524-
NASA, Television From Satellites: New Possibilities For Worldwide Use.

Given an adequate data bank, it is obviously possible to construct
many kinds of maps, and indeed other maps have been generated to supply
the background upon which intersectional contours have been plotted. The
use of a computer in generating special-purpose maps or in providing
background upon which to display geometrically definable contours seems
extremely attractive. With illustrative examples, this report
describes some of the more common map types generated from a data tape
of 10,000 points.

The report should be of interest to those dealing with study and
display of geometric problems related to geography.
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SUMMARY

The problem of displaying geometrically definable contours upon
geographic maps arises in many contexts. If the parameters defining
the contours are to be varied to achieve some desired relation between
the contours and the geography, and if lack of symmetry precludes the
use of general-purpose overlays, then computer graphics become very
attractive. The computer with graphic output capability can be used to
construct overlays for use with existing maps, or if provided with
map data, can draw contours upon a map. In the second case, the choice
of scale and map projection is at the user's discretion. Sometimes it
is possible to construct a special map projection possessing the fea-
tures essential to the use of general-purpose overlays.

The contours to be mapped are usually definable as the intersec-
tion of some geometric surface with the earth's surface. It is assumed
here that the computation provides the coordinates of intersectional
points to be mapped and the process of mapping these points is identical
to that of mapping earth geographic points. Thus, in the preparation
of overlays, the mapping transformation must be the same as that used in
preparing the map upon which the overlay is to be used.

Overlays are useful when the problem can be treated with a small
number of overlays; for some problems it may be economical to exercise
the required care in handling the scaling and registration problems and
to accept the restrictions imposed by existing map scales and pro-
jections. Such cases are probably not numerous, and the alternative
of generating the map by computer graphics will generally be favored.
Although the focus of this report is upon the generation of maps from
a data bank of points, the section dealing with map transformations
may be useful to those concerned with overlay construction.

A computer-generated map is produced by connecting sequences of
points with line segments. A string of points may represent an island,
lake, political boundary, or a portion of continental coastline. A
particular mapping or map projection is created by individually trans-
forming the coordinates of the stored points to a cartesian coordinate

equivalent to the desired mapping and connecting the points sequentially
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with straight line segments. The principal questions which arise in
map generation are the number of points required and the form in which
coordinates are stored.

A stored map of about 10,000 points appears to be adequate to pro-
duce maps of scale 1:40,000,000. At this scale, a world map with rec-
tilinear grids is about 40 in. wide. At greater enlargement the geomet-
ric substructure of straight line segments becomes evident but may not
preclude the use of such maps for some problems. At scales smaller
than 1:80,000,000, some points tend to coalesce and give a darkening
effect detrimental to the appearance of the map. The effect is especially
pronounced on those regions of some maps where the scale becomes very
small. Rejection of some closely spaced points can be employed to im-
prove the appearance of small scale maps or map regions.

A brief discussion of geographic and geocentric coordinates is
presented to introduce the subject of coordinate forms (angular versus
unit vector representation) and to indicate some limits in the validity
of the spherical earth approximation with respect to mapping.

Several map types are illustrated: rectilinear, azimuthal equi~
distant, and polar perspective. The corresponding coordinate transfor-—
mations are described. The transformation equations depend upon the
form of the stored coordinates; with rectilinear maps the most effici-
ent coordinate form is angular (latitude and longitude), whereas unit
vectors (direction cosines) are favored for azimuthal type maps.

The efficiency of coordinates is partially in simplifying and
speeding the mapping transformations but is more clearly evident when
mapping limited regions. With limited regions, efficiency implies
rapid identification of those points which fall within the domain of
interest or rapid elimination of points exterior to the domain of
interest. With rectilinear maps, the domain of interest is defined
by latitude and longitude extremes and point coordinates defined by
latitude and longitude can be rapidly sorted upon the bounding extremes.
With azimuthal maps, the domain of interest is defined by the cosine
of a polar angle. For each point, the cosine of the polar angle
(relative to an arbitrary origin) can be rapidly calculated as the

scalar product of the unit vector to the origin and the unit vector
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to the point. By comparing that cosine with the limiting cosine,
the point can be rapidly accepted or rejected.

The efficiency of sorting points can be improved by limiting the
interval (latitude-longitude or polar angle) spanned by a data string.
If the maximum interval spanned by a string is %, then only those strings
with the first point lying within *£ of a boundary require point-by-
point testing:; other strings are either totally within the boundaries or
totally exterior to the boundaries.

Intersectional contours can often be calculated approximétely
by using a spherical model of the earth's surface. However, if ray
directions are specified at a point in space, the precise values of
intersectional coordinates will be sensitive to the assumed shape of
the earth. For rays originating at a space point several earth
radii from the center of the earth, coordinate errors of hundreds
of miles arise in substituting a sperical earth model for an oblate
earth model. The large errors occur with rays which are nearly tan-
gent to the earth. When rays pass over the horizon, the intersec-
tional contour defined by intersectional points ceases to exist, but
a second contour is introduced which defines the earth point locations
at which the space point is just on the horizon. This horizon plane
and the local vertical are fundamental to the geographic coordinate
system and for a space point at synchronous distance, an assumed
identity of geocentric coordinates on a sphere and geographic coor-

dinates upon the oblate earth introduces error of no more than 8 n mi.
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I, INTRODUCTION

Those features of the earth's surface which can be represented by
contours (e.g., coastlines, political boundaries, and lines of constant
elevation) can be represented approximately by points connected by
line segments. By storing sequences of points (say latitude and lon-
gitude coordinates) upon tape or disk, a great variety of mappings or
projections can be computer-generated to provide work aids or illus-
trations for particular geographic problems. The stored map is a data
bank which provides geographic coordinates of earth surface points.
This report illustrates the use of a small data bank (10,500 points)
stored on magnetic tape for constructing several kinds of maps.

Computer-generated maps can be useful in providing a background
upon which various curves are plotted. The curves might define satellite
or missile ground tracks, the region within which a geostationary .
satellite is at least n degrees about the horizon, or the swath of
earth visible to a high-flying aircraft.

If the parameters describing. the curve are fixed and known in ad-
vance, then direct plotting of the curve upon existing maps is likely
to be more efficient than using a computer-generated map. However,
if the parameters describing the curve are to be studied in order to
achieve some desired relation between the curves and the existing geog-
raphy, then trial-and-error plotting might be abandoned in favor of
superposing movable overlays on the map. Overlays are useful in many
problems, but fail if there is insufficient inherent symmetry to permit
the construction of general-purpose (movable) overlays. If general-
purpose overlays cannot be constructed, the computer—generated maps become
very attractive.

There are several ways of asing a computer to treat mapping prob-
lems. In a direct and obvious way, the computer generates overlays
conforming to existing map scales and need not necessarily generate the
geographic background data. This scheme can be useful if scaling and
registration are treated carefully (i.e., if the computed overlays
are distortion-free relative to the map on which they are used).

Several advantages appear if the background geography is computer-



generated; the scaling, registration, and relative distortion problems
vanish, and the computer—generated picture is not limited to the
scale choices or projections dictated by available maps.

For some problems, special-purpose maps may present the desired
information in directly scalable form. An example arises in plotting
great circle routes from some point of origin. If, for instance, it is
desired to plot great circle routes from Seattle, Washington, to a number
of earth points, then these routes can obviously be reduced to sequences
of points and plotted on any map of the world. Alternatively, an azimuthal
projection of the world with Seattle at the pole directly displays
great circle routes to every other earth point.

A less obvious example of the use of special-purpose maps occurs
in studies of the area covered by narrow antenna beams directed from
satellites toward specific earth points. The antenna beams are idealized
to cones of circular or elliptical cross section, with the cone dimen-
sions reflecting some critical or marginal intemsity of radiation. The
intersection of these cones with the surface of the earth is a space
curve which can be plotted on a variety of maps; however, most such
maps introduce distortions peculiar to the map itself. However,
by creating a map or picture of the earth as seen from the satellite,
the intersections retain their geometric simplicity (circles or ellipses)
and the characteristic dimensions are approximately valid for all
pointing directions. Maps or pictures of this kind are termed polar
perspective projections.

In the previous example and in many others, geometric contours
on the earth's surface result from delineating those earth points lying
within some solid angle defined at a point in space. A related, but
somewhat different, problem delineates the region of the earth's surface
from which a space point can be viewed under some limitations of eleva-
tion and possibly azimuth. In either case, the problem is reducible
to the calculation of intersecting rays with the surface of the earth.
The rays represent lines of sight, and successive intersectional
points may be connected to construct the desired contour.

For rays defined by a solid angle at a space point, intersections

with the earth's surface do not necessarily exist for all rays within



the solid angle. The intersectional coordinates are semnsitive to the
assumed shape of the earth, and large errors can arise in substituting
a spherical model for an oblate earth model. For rays which originate
at the earth's surface with directions specified in a frame defined

by the local vertical, the error introduced by choosing a spherical
earth model is small, approaching zero as the distance to the space
point becomes large.

The illustrative map-pictures that appear in the text were produced
with an IBM-360/65 computer coupled to a Stromberg Datagraphix, Inc.,
S-C 4060 graphic output device. A data tape of 8300 geographic points
was supplied through the courtesy of the UAIDE library operated by
Stromberg Datagraphix, Inc. These data were supplemented with 2200
political boundary points read from maps (AMS stock numbers 1125x1,
1125x2, and 1125x3).



II. ©POINT DENSITY AND NUMBER OF POINTS

The map illustrations shown in this report are based upon a
data bank of about 10,500 points defined by geographic coordinates.
Point coordinates are stored in a string of alternate latitude and lon-
~gitude values. The end of a string is indicated by (0,0), which signals
the computer that a contour (island, lake, political boundary, etc.) is
completed. The data set contains 374 such strings. The points within
a string have nearest-neighbor spacings not less than 5 n mi. Maximum
spacings of 150 n mi occur infrequently and only along geometrically
defined political boundaries.

Figure 1 shows a map based upon the 9475 points (exclusive of zero
signals}) which lie between -75° and +75° latitude. The line width
(0.0065 in.) defines a resolution unit; two points spaced closer than a
resolution unit are not distinguishable from each other. Although the
eye at normal viewing distances is capable of resolving small points at
somewhat smaller spacing (0.004 in.), the resolution unit defined by line
width is more appropriate to the present discussion. The scale of Fig. 1
is approximately 1:124,000,000 along the equator and at this scale the
resolution unit of 0.0065 in. transforms to approximately 11 n mi.
Evidently the minimum point spacing of 5 n mi is not resolvable at this
scale.

Figure 2 shows the same map constructed by rejecting points which
lie within six resolution units (0.039 in.) of both nearest neighbors.
The rejection rule reduced the number of points used from 9475 to 4372.
Small islands are retained by overriding the rejection rule for the
first three points of a string. Comparison of Figs. 1 and 2 indicates
that there is some loss of detail -- the available point demnsity is
perhaps a factor of two greater than necessary to draw maps at this
scale.

Points are treated sequentially along a string and rejection rules
can be comnstructed based upon nearest neighbors, next nearest neighbors,
and so forth. However, adjacent strings and "goosenecks" within strings
can create small spacings of a nonsequential nature. This problem is

aggravated in some perspective mappings which view regions at low
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incidence angles and consequently decrease the apparent distances between
points. An example of this phenomenon is shown in the following section
in connection with the polar perspective projection.

The foregoing concerns problems arising from an over-density. of
points. At the other end of the point density spectrum is the question
of the minimum useful number of points. Figures 3 and 4 represent suc-
cessive enlargements of an area centered on 15°E and 45°N. In Fig. 3
the scale is approximately 1:40,000,000 (at 45° latitude) and the reso-
lution element defined by a line width is about 4 mi. The point density
is evidently sufficient to draw a good map at this scale. In Fig. 4
(scale ~ 1:20,000,000) the resolution element is decreased to 2 mi and
some geographic features appear schematized. At this scale a higher
point density could provide a better appearance but the general area
is recognizable and tﬁe map detail may be adequate for some purposes.

The examples and discussion above indicate that maps of good ap-
pearance require point spacing which sometimes approaches the resolu~
tion limits of the plotting equipment and the human eye. Over-densities
by a factor of two are probably acceptable. If the minimum spacing
falls to one-third of the resolution element, then rejection of closely
spaced points can improve map appearance. Loss of detail is apparent
where numerous point spacings exceed about two resolution elements, but

useful maps of somewhat schematic appearance may be produced.
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ITI. COORDINATES AND TRANSFORMATIONS

GEOGRAPHIC AND GEQCENTRIC COORDINATES

An observer at earth point P can determine his latitude by measur-
ing the elevations of stars relative to his local horizon plane. By
plotting his position on a map constructed with grid lines of geographic
latitude, he identifies his position relative to other points similarly
defined by observation. The geographic latitude ¢ defined in this way
is distinct from geocentric latitude ¢/ except on the equator and at
the poles (see Fig. 5). The direct connection between observation and
geographic latitude is useful to navigators and surveyors and geographic
coordinates are used on all common maps. The geographic coordinates are
sometimes implicit as, for example, in a computer-—stored map providing
the direction cosines of the unit vector normal to the reference ellip-
soid (n of Fig. 5).

In the construction of maps, the distinction between geocentric
and geographic coordinates can often be ignored. In particular, an as-
sumed identity of geocentric and geographic latitude yields maximum er-
ror distances of about 11.6 n mi (at 45° latitude), an error that is
only marginally discernible when the map scale is smaller than about
1:120,000,000,

For all problems in which mapping transformations are applied to
both the points and the grids, the resultant map will show points cor-
rectly spaced relative to the grids. Thus if a mapping transformation
is derived by projective geometry using a spherical earth model, the
transformation may be reduced to an algebraic equation and applied to
geographic coordinates which had no meaning in the derivation of the
transformation. The points are still correctly placed relative to the
transformed coordinate lines, and the geographic latitude of points can
be accurately located with respect to the transformed latitude scale.

Earth oblateness and the related distinction between geocentric
and geographic coordinates is primarily significant when calculating
contours or points defined geometrically by the intersection of sur-
faces or rays with the earth’s surface. The generation of such inter-

sectional contours is discussed in Section IV. The assumed shape of
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Fig. 5— Geographic latitude ¢ and geocentric latitude ¢'
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the earth (spherical or oblate) can be a significant factor in defining
the intersectional coordinates. The purpose of the present discussion
is to point out that geographic coordinates are the natural coordinates
of maps and that intersectional contours should be similarly defined to

be compatible with conventional mappings.

COORDINATE FORMS

The precise form of a mapping transformation is determined par-
tially by the form of the input coordinates. The two most important
general forms of input coordinates are (1) angular coordinates (lati-
tude and longitude) and (2) unit vectors (the three-direction cosines
of the point to be mapped). In describing mapping transformations it
is convenient to assume the most natural form of input coordinates for
the desired mapping. In the notation to be used here, the direction

cosines are related to longitude A and latitude ¢ by:

u = cos ¢ cos A
X
uy = cos ¢ sin A ¢N)
u, = sin ¢
The inverse relations are:
u
A= tan'-1 A
u
X
(2)
u
¢=tm;l z
1 - u2
z

These substitutions can be made in all of the following mapping trans-
formations to describe the transformation in terms of the alternative

input coordinates. It will usually be found, however, that the natural
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choices provide simpler and more rapid computation, and it may be eco-
nomical to provide data banks of both types.

For some applications it may be desirable to store specialized co-
ordinates. If, for example, it is desired to produce a large number
of maps all having the same general transformation law but differing
in scale and domain of interest, then it may be possible to introduce
coordinates proportional to tpe map distances and avoid the repetitious
computation of the entire mapping transformation. The possible economy
of the precomputation of linearly scalable coordinates is self-evident
but dependent upon expected output volume. The following description
is limited to general situations which can be specialized at the dis-

cretion of the user.

MAPS WITH RECTILINEAR GRIDS

Maps with rectilinear coordinates can be generated by direct plot-
ting of latitude versus longitude, by conformal Mercator mapping, by
cylindrical projection, and by somewhat arbitrary rules of vertical
scale nonlinearity. The direct plotting of latitude versus longitude
is convenient for interpolation but is less commonly used than maps in-
tended to preserve (not necessarily achieving) local scaling. The con-
formal Mercator map does preserve local scale and direction by expand-
ing the latitude interval to compensate for the parallel presentation
of meridians. The Mercator transformation yielding abcissa x and ordi-

nate y from longitude A and latitude ¢ is

Mercator map

x = K\
(3)
- K 1+ sin ¢
Y= W T T oin e

with ¢ small, y - K¢, and it is convenient to regard K as a factor con-
verting radians to map distances (inches or centimeters).
Mercator maps and maps derived by cylindrical projections are very

common and present the land masses in a familiar but distorted appearance.
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Unless the conformal property of the Mercator map is specifically re-
quired, the cylindrical projection can provide a familiar appearance
and avoid the awkwardness of the Mercator mapping at extreme latitudes.
A class of cylindrical projections can be constructed by projecting
points upon a tangent cylinder as indicated in Fig. 6. The projection
point P lies in the plane defined by the tangent circle and also lies
in the meridian plane of the point being projected. The tangent circle
is the equator in familiar maps, but oblique projections could be used
to portray, for instance, the swath of earth visible on a great circle
airline route. For the cylinder tangent at the equator, the mapping

transformation is

Cy lindrical Projection

(4)

_ K1 + k) sin ¢
y k + cos ¢

for ¢ small, y - K¢ at all k.

The properties of the cylindrical projection map depend upon the
value of the parameter k. If k = «, latitude lines are parallel pro-
jected onto the cylinder and the map is called an equal-area projection.
Areas are preserved but at the sacrifice of large distortions in height/
width ratios. The case k = 0 gives more distortion upon approaching
either pole than does the Mercator map and is a seldom-used projection.
The choice k =< 0.8 gives a map of good proportions when mapping the
world to latitudes approaching (or reaching) the poles.

Maps of the Army Map Service, which are designated as Series 1107,
are cylindrical projections available at several scales. These maps
are useful in conjunction with overlays. The axes of the small scale
sheet are well described by Eq. (4) with k = 0.77. The same map at a
scale of 1:40,000,000 shows discrepancies of one or two millimeters in

the vertical axis and the fit can be improved by using
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_ (1 + k) sin¢
Y7 T T cos §)

sin ¢

~——cos ¢
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Fig. 6—Geometry of the cylindrical projection (spherical earth)
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KA + k)1 - 2f) sin ¢ (5)
2
k(@ - £ sin” ¢) + cos ¢

The added refinement which arises because the map is projected with an
oblate rather than a spherical model reduces the scale errors to a few
tenths of a millimeter. At this error level some scale inconsistencies
can be observed by comparing vertical scales on the left and right sides
of the map or in the positive-negative latitude regions. These discrep-
ancies, possibly due to dimensional changes of the paper, impose a limit
upon the accuracy of overlays. The problem is aggravated by the fact
that overlays are usually constructed on a backing different from the
map paper stock and long-term changes produce differential errors be~-
tween map and overlay.

The problem of paper dimensional stability and precise representa-
tion of a somewhat arbitrary projection are unimportant if map points,
grids, and overlay contours are generated by the same transformation
rule upon a computer. If maps with rectilinear grids are to be used
only for background with curves or contours superposed according to the
same latitude transformation law, ease of computation and familiar ap-
pearance may be the dominant factors determining the latitude transfor-
mation. The qualitative characteristic of familiar appearance can be

achieved with a simple quadratic representation of the vertical scale

expansion.

Quadratic Sceale Factor

x = K\
(6)
y = Ko (1 + a¢2)

If a is chosen as ~0.15, the latitude dimension of the map over the in-
terval 75°S to 75°N will be nearly the same as that of a cylindrical
projection with scale factor K and parameter k = 0.8. Figures 7 and 8
illustrate a side-by-side comparison of the western hemisphere mapped

according to the cylindrical projection (k = 0.8) and the quadratic
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expansion (a = 0.15). All of the other rectilinear map illustrations

of this report are based upon the quadratic expansion with a = 0.15.

Azimuthal Maps

With azimuthal maps, all great circles through the origin are
straight (radial) lines. Directions from the point of origin are cor-
rectly represented, but distances along the radial great circle routes
are not uniformly scaled in maps derived by geometric projection. An
azimuthal map with uniform radial scale can be readily derived, however,
and the example given here is based on this choice.

The great circle arc distance R from the origin (¢o = latitude,

AO = longitude) to a point ¢, A is a fundamental quantity. For the
equidistant (or equal interval) map, the arc R may be uniformly scaled.
The same arc could be scaled in other ways, e.g., by rules derived from
projective geometry, to present other radial dependencies.

For stored points defined by direction cosines, the direction co-

sines of the point of origin are fixed quantities given by:

u_ = cos ¢_ cos A

X0 o o

u.yo = cos ¢o sin Ao )
u = sin ¢0

The arc R to a point defined by U, uy, and u, is

cos R=u_u +u_u,u u (8a)
X0 X yo y®> "zo z

The arc R must satisfy O0 < r < 7 and no sign difficulties arise in tak-

ing the arc cosine of the above expression. The plane defined by the

point (ux . uyo’ uzo)’ (ux, u, uz), (0, 0, 0) contains the arc R.

o y
Azimuth can be defined as the inclination of this plane to the meridian
plane containing the point of origin, and the inclination is calculated

as the angle between the normals of these planes.
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The normal to the meridian plane has direction cosines propor-~

tional to:

u = -u
X0 yo

4
u = u

yo X0

(8b)

u =0

Zo

N = u2 + u2

o X0 yo

to:
v =u u -u
X yo z zo ¥
W =u u -u
v zZ0o X X0 Z
(8¢c)
.
u = -u
z X0y yo X
N ="\/;’2 +u? o u?
X y
The azimuth is given by
u;Ou; + E;O?é
cos A= NN :
o
(8d)
sin A= 1 - cos2 A

where sin A is positive if 0 < ) - Xo < 7, and otherwise is negative.
The cartesian coordinate equivalent of the azimuthal map is easily

generated by
KR sin A

b
il

(8e)
KR cos A

y

where R is found by Eq. (8a) and K is a scale factor.
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The computer operations indicated by the foregoing steps are quite
simple and fast relative to the number of trigonometric functions which
would have to be computed with latitude and longitude input coordinates.
Figure 9 illustrates an azimuthal, equidistant map of the world with

Seattle, Washington, at the origin.

Polar Perspective Maps

Polar perspective maps are special azimuthal maps which portray
the earth as seen from some point in space. The apparent angular sepa-
ration between pairs of points is approximately preserved in this map-
ping. A projection is first made onto the interior surface of a sphere
centered at the viewer's position in space (see Fig. 10). The preser-
vation of angular directions is not exact because of the impossibility
of transforming the spherical projection surface into a plane picture.
However, if the observer is more than a few earth radii from the cen-
ter of the earth, the pilot representation yields only small distor-
tion.

The arc R is the same as used in the azimuthal projection, but
must here be limited to R < sin_l(l/s) where s is the observer's dis-
tance (earth radii) from the earth's center. The angle T is related
to the arc R by

sin R
s -~ cos R 9

tan T =
Azimuths are calculated as in the azimuthal projection and radial dis-
tances are mapped proportional to the angle T. Figure 11 shows a polar
perspective projection based upon an observer located over the middle
of the North American continent at distance s = 6.5 earth radii from
the center of the earth.

In this mapping the radial scale approaches zero near the picture
perimeter and points become spaced very closely together. Figure 11
was produced by rejecting all points spaced within three resolution
units of the preceding neighbor. No points were plotted on the bound-
ary circle or upon the circle one resolution unit interior to the

boundary.
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Fig. 9 - Azimuthal, equidistant projection centered at Seattle, Washington
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Projection surface

(spherical)
—— ~— - -
|
arc T |
|
R !
i I\
Y hE
cos R s = cos R

Fig. 10—The polar perspective (geometry)
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Fig. 11—Polar perspective mapping over North America
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MAPS OF LIMITED REGIONS: COORDINATE STORAGE CONSIDERATIONS

When mapping a limited region with a data bank of world points,
the data set may be considered as consisting of two subsets: (1) the
subset of points interior to the region of interest, and (2) the com-
plementary subset of exterior points. For large data banks it is de-
sirable to provide either rapid access to interior points or rapid re-
jection of exterior points. The limited region maps (Figs. 3, 4, and
11) were produced with a point-by-point test applied to every point of
the data set.

Earlier reference was made to the use of natural coordinates--lat-
itude and longitude for rectilinear maps, and direction cosines for
azimuthal maps. Although the choice of the natural coordinates will be
efficient in generating world maps, the choice of appropriate coordi-
nates is more important when mapping limited regions. For rectilinear
maps, the desired boundaries will be described by latitude and longitude
limits and exterior points can be rapidly rejected in a series of (at
most) four comparisons if the points are described by latitude and lon-
gitude., If the coordinates were described by direction cosines, the
transformation of Eqs. (2) would have to be applied prior to the com-
parison tests. Computation of the transformation consumes more time
than does the cylindrical mapping transformation.

For azimuthal maps, the domain of interest is a circular region of
polar angle R centered at an arbitrary origin (the pole). Points are
rejected if cos R is less than a specified value, cos Rmax' When co-
ordinates are given by direction cosines, cos R is formed by three mul-
tiplications and two additions. The subsequent comparison is very
rapid. If the points are specified by latitude and longitude, then

cos R is given by the form:
cos R=a sin ¢ + b cos ¢ cos (A - Ao) (10)

where a and b are the fixed values sin ¢0, cos ¢o of the origin. The
computation of cos R requires the computation of a sine and two cosines,
a process about 12 times longer on the IBM 360/65 than the three multi-

plications and two additions required by the unit vector description.
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Evidently point~by-point rejection ceuld be replaced by block re-
jection. The construction of regional blocks of points involves a com~
promise between the desirability of minimizing the overlap between ad-
jacent regional blocks and the undesirability of many stops and starts
associated with boundary crossings. It will probably be easier and
perhaps as efficient to limit strings to some maximum span (latitude-
longitude intervals for rectilinear maps, polar angle interval for di-
rection cosine data). If the first point of a string falls within the
span distance of a boundary, then every point of the string must be
tested, but strings remote from the boundary by more than the maximum
span can be identified as either totally outside or totally inside the

boundary.
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IV. GEOMETRIC CONTOURS ON THE EARTH'S SURFACE

The geometric contours described here are construed as the inter-
section of a cone with the surface of the earth. The elements (gener-
ators) of the geometric surface are straight lines or rays, and the
contours can be developed by connecting the points at which the rays
intersect the surface of the earth. The coordinates of the inter-
sectional points can be drawn on a map in the same fashion as are the
mapping points already discussed. It is convenient to first describe
the intersections using a spherical model of the earth's surface.
These approximate geocentric coordinates are rather easily found and
provide the necessary data for the computations required to obtain

geographic coordinates upon the oblate earth.

INTERSECTIONS WITH THE SPHERICAL EARTH

The basic geometry which describes either the polar perspective
mapping or the problem of intersections is illustrated in Fig. 12.
Point P is at X relative to the longitude of S and is at latitude ¢.
In this relative longitude system, the longitude of S is zero, the
latitude is §, and the geocentric distance of § is s. The plane SPO
defined by S, P, and the center of the earth intersects the earth in
a great circle arc, R = 65. Plane SPO forms dihedral angle A with
the meridian plane of S and Z with the meridian plane of P. The
spherical triangle QPN defined by the meridian planes and by arc R is
shown in Fig. 13. The dihedral angles A and Z are azimuths, conven-
tionally measured positive eastward from the northern direction of
the meridian. In the spherical earth model, it is convenient to take
the earth radius q as unity and measure the distance s in units of
earth radius.

The elevation H is the angle between ray SP and the tangent to
arc R at point P. Angles H, T, and R are all measured in the plane
SPO. Figure 14 illustrates these angles in this plane. The angles
are not independent, since, in fact, H+ T + R = n/2., Figure 14 is
the same as that used in the description of the polar perspective
mapping, Fig. 10, except that it is slightly generalized to allow

for a nonzero latitude for point S.
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Fig. 13— The spherical triangle of the intersection problem
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Fig. 14—

The plane containing qrc R
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It is convenient to categorize mapping (polar perspective) and
two kinds of intersection problems according to the characteristic
input coordinates and the desired output coordinates. In mapping,
the coordinates of the point to be mapped are known whereas inter-
sectional problems seek the coordinates to be mapped when these co-
ordinates are defined indirectly by constraints.

In polar perspective mapping, the point P(A, ¢) to be mapped is
described by latitude ¢ and relative longitude A. From the spherical
triangle NQP (Fig. 13):

]

cos R =3s5in § sin ¢ + cos § cos ¢ cos A (11)

cos ¢ sin A (12)
sin ¢ cos § - cos ¢ cos A sin §

tan A =

From the plane triangle (using construction line PM; see Fig. 14),

sin R
tan T = s - cos R (13)

In the case of intersectional problems, the coordinates of the
intersection (A, ¢) are desired. Two kinds of intersection problems
may be distinguished, and in both kinds the coordinates of S are known.
For intersections of the first kind, the direction cosines (or T, A)

of the ray from S to P are prescribed. Then, from the plane triangle
s sin T = sin (T + R) (14)

or
R =-T + sin_1 (s sin T) (15)

Using the spherical triangle NPQ (see Fig. 13),

sin ¢ = sin § cos R + cos & sin R cos A (16)
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. _ sin R sin A
cos ¢
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]
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17)
_cos R - sin § sin ¢
cos ¢ cos ¢

0
Q
0]
>
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Intersections of the second kind arise when finding the coordinates
As ¢ of points from which S can be observed at an elevation angle H and

azimuth Z. From the plane triangle

cos H=35s cos (R + H) (18)
or
R = —H + cos ' (EQ%_E) (19)
In the spherical triangle
. _ sin R sin Z
sin X = “o5 & (20)

Using the law of cosines in the spherical triangle
sin § = sin ¢ cos R + cos ¢ sin R cos Z (21)
By rearranging and squaring, it is possible to form a quadratic equa-
tion for either sin ¢ or cos ¢. A somewhat easier solution can be
found by forming an auxiliary triangle as shown in Fig. 15.
The arc R’ is given by

cos R’ = cos 8 cos A= cos ¢ cos R - sin ¢ sin R cos Z (22)

This equation can be solved jointly with the previous equation contain-

ing sin ¢, cos ¢. Eliminating cos ¢ between the two equations

sin § cos R -~ cos § cos A sin R cos Z (23)

sin ¢ =
1 - sin2 R sin2 yA
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Fig. 15—The auxilliary spherical triangle
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The preceding equations are based upon treating the earth as a

sphere.

THE OBLATE EARTH

Figure 5 shows a sketch of the cross section of an ellipsoid of
revolution representing the oblate earth (greatly exaggerated). The
cross section is taken through the meridian plane of point P. The
semimajor axis of the ellipse is a = 1 where a is the equatorial radius
of the earth. The semiminor axis (polar radius) is b. The earth

flattening factor is defined by

-.a-b_ 1
£=— T 297

(24)

In Fig. 5, the geocentric latitude and radius of point P are ¢/
*
and r, respectively. The geographic latitude of P is ¢ and is the
inclination of the local vertical (at P) to the éﬁuatorial plane. The

ellipse is described by:

2
z_

b2

'N
NN

+ =1 (25)

W

The local vertical is normal to the ellipsoid of revolution so

that angle ¢ is given by

£ - 4x _ EE.E.= _zlx (26)
an ¢ dz b2 X (1 - f)2

The prime is appended to ¢ to designate geocentric latitudes
only when the distinction is required. 1In a spherical earth model,
the distinction cannot be made (¢’ = ¢). 1In the description of mapping
transformations of Section III, the symbol ¢ (unprimed) always repre-
sents geographic latitude.
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Noting that z/x = tan ¢/

tan ¢ = (1 - i:')_2 tan ¢ = (1 + 2f) tan ¢’ (27)

In this and the following, the quantity f2 will be ignored. Because
f is small, let ¢’ = ¢ — 8¢, and

tan ¢ - tan §¢
1+ tan ¢ tan §¢

tan ¢ = (1 + 2f) tan'(p - 8¢) = (1 + 2f) ( ) (28)

This can be rearranged and simplified to
8¢ = f sin 2¢ (29)

The quantity f is about 11.6 arc-min and the maximum difference between
geocentric and geographic latitude occurs at 45° latitude.

The quantities p and q in Fig. 5 are useful in describing inter-
sections of rays with the oblate earth. For the point P(x, y)

X=p+ qcos ¢
(30)
z = q sin ¢

Substituting these in Eqs. (25) and (26) and dropping terms of degree
2 and higher in f, the definitions of p and q are obtained:

p = 2f cos ¢
9 (31)
q=1-2f + £ sin™ ¢

Using the values of p, q, the cartesian coordinates on the ellipse

are given in terms of geographic latitude by

x=(1+Ff sin2 ¢) cos ¢
(32)

z=(1-2f + ¢ sin2 ¢) sin ¢
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The geocentric radius r of P(x, z) is

r=1-f sin2 s (33)

INTERSECTIONS WITH THE OBLATE EARTH

Intersections of arbitrary surfaces with the surface of the earth
are often adequately approximated with a spherical representation of
the earth's surface. Corrections can be derived for converting
spherically calculated intersectional coordinates to geographical
coordinates. The following paragraphs describe the correction pro-
cedure for space point S, which lies in the equatorial plane, and the
numerical values which follow are further specialized to points which
are at the geosynchronous radius of 6.6166 earth radii. The magnitudes
of such corrections provide a useful indication of the adequacy of the
spherical earth model for a synchronous, equatorial satellite.

As in the previous description of intersections on the sphere,
two cases are distinguished: (1) the ray is described by an origin and
direction at a point S exterior to the earth's surface, and (2) the
ray direction is specified on the earth's surface with a termination
specified at point S. The two cases are complementary, and both often
arise within a particular problem. An example which illustrates the
two cases in their complementary form is found in treating the ground
coverage of a narrow beam directed from a communication satellite.

The beam 1is conical, and fhe generators of the cone are rays with direc-
tions specified relative to the satellite body axes. The satellite
position and orientation are specified relative to the earth, and con-
sequently the direction of every ray is specified in the overall geom-
etry. Ray intersections, when they exist, can be calculated for
spherical and oblate earth models. Some rays may not intersect the
spherical earth, and some which intersect the spherical earth will

pass the oblate earth. For such nonintersecting rays, the rays will
have passed over the horizon of the earth as seen from the satellite,

If a portion of a beam passes over the horizon, then the coverage
contour displayed upon a rectilinear map is closed by the horizon line.

More generally, adequate coverage may require that the satellite be
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seen at some minimum elevation H above the horizon. We are then in~
terested in the geometry of case 2, which seeks the coordinates of an
observer such that the satellite can be viewed at a certain elevation.
By treating azimuth, Z, as a parameter, the contour of constant eleva-
tion can be computed.

In either of the two geometries, the earth may be treated as
spherical and corresponding coordinates calculated for the intersec-
tional contours. Corrections developed to convert the spherically
calculated intersections to geographical coordinates can usually be
associated with a spherically calculated pair of coordinates. The
corrections will not necessarily be the same in the two geometric
cases, as evidenced by the fact that in the first case some spherically
calculated intersections have no corresponding intersections on the

oblate earth and hence no real corrections.

Case 1l: Ray Origin and Direction Specified at an Exterior Point

The ray direction at point S is specified by tilt T and azimuth A
(Figs. 13 and 16). From these angles and knowledge of the position S,
tentative coordinates X, ¢ are calculated according to Eqs. (15)-(17)
of the spherical earth model. These coordinates index the point to be.
treated and corrections are to be applied to these coordinates. For
the oblate earth, the radius of the intersection is not unity but is

given approximately by

r=1-f¢f sin2 ) (34)
The intersection of the ray with a sphere of radius r satisfies
ssinT=1r sin R+ T) (35)

In correcting from the unit sphere to a sphere of radius r, the angle

T remains constant but

SR =- tan (R+T) 6r = tan R+ T) £ sin2 ) (36)
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co (H)

Fig. 16— Intersecting ray SP on the oblate earth
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In the following, consideration is limited to points S which lie
on the equator, and the longitude of the intersection is measured rela-
tive to the longitude of point S. For the spherical triangle thus

restricted, using the previous notation (Fig. 13),

tan A = sin A tan R

(37)
sin ¢ = cos A sin R
Differentiating with azimuth A constant
Sh .-:Eir_’..é_ SR
2
cos ¢
(38)

8¢ = cos A cos A 6R

Eliminating A in favor of the spherical values of A, ¢, subtituting
the previous expression for S8R, and adding the correction to convert

to geographic latitude

f sin2 ¢ sin A tan (R + T)

8r = sin R cos ¢
(39)
sin 2¢ + cos A sin3 ¢ tan R + T)
§¢ = £ "
sin R

It is desired to represent these corrections entirely as functions

of the spherically calculated values of A, ¢, and for this purpose

c,os-'1 (cos A cos ¢)
—l[ sin R ]
tan ——
s — cos R

Table 1 shows the corrections 86X and 8¢ as functions of A, ¢. The

=
[

(40)

=
fl

table applies to a synchronous, equatorial satellite with s = 6.6166,
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Table 1

LATITUDE AND LONGITUDE CORRECTIONS (ARC-MIN) FOR
INTERSECTIONS DEFINED BY TILT AND AZIMUTH

Longitude
Latitude| O 15 30 45 60 75 80
0 0.00%  0.00 0.00 0.00 0.00 0.00 0.00
0.00°  0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.03 0.06 0.11 0.22 0.80 3.98
2.02 2.02 2.02 2.02 2.02 2.03 2.07
10 0.00 0.11 Q.25 0.46 0.90 3.30  17.56
4.03 4.03 4.03 4 .04 4.05 4.11 4.49
15 0.00 0.27 0.59 1.07 2.09 7.84  47.63
6.03 6.04 6.04 6.05 6.09 6.31 7.89
20 0.00 0.49 1.09 1.98 3.92  15.12 117.85
8.03 8.03 8.05 8.08 8.17 8.74  14.12
25 0.00 0.82 1.80 3.29 6.54  26.41  359.79
10.02  10.03  10.06  10.13  10.31  11.58 33.17
30 0.00 1.26 2.79 5.12  10.27  44.21
12.05  12.06  12.12  12.24  12.59  15.15
35 0.00 1.88 4.16 7.68  15.58  73.76
14.15 14.17  14.27 14.48  15.10  20.16
40 0.00 2.74 6.09  11.30  23.32 127.95
16.40  16.44  16.60  16.97 18.03  28.28
45 0.00 3.98 8.87 16.59  35.02  248.00
18.94  19.01  19.26  19.87 21.68  44.80
50 0.00 5.82  13.03  24.63  53.75 670.17
21.98  22.10  22.51  23.53  26.68  99.82
55 0.00 8.70  19.59  37.63  86.45
25.94  26.13  26.82  28.56  34.33
60 0.00  13.54  30.80  60.65 152.09
31.57 31.91  33.12 36.29  48.05
65 0.00  22.65  52.35 107.70 323.77
40.61  41.24  43.60  50.12  80.47
70 0.00  43.15 103.00 232.95 1302.15
57.76  59.20  64.78  82.31  249.06
75 0.00 109.24 285.76  925.57
102.66 107.71 129.53 237.18
80 0.00 1008.18
495.02  647.40

a .
Longitude correction, §A.

bLatitude correction, &¢.
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Case 2: Ray Origin at the Earth's Surface with Specified Direction
and Termination

With prescribed values of elevation H and azimuth Z, the coordi-
nates of the point of origin are tentatively calculated using the
spherical model (Eqs. (19), (20), (23)). H and Z are rigorously de-
fined at the (unknown) point of origin in a coordinate system with x
the outward normal to the earth's surface, z tangent to the local
meridian line in the northern)direction, and y orthogonal (east) to
form a right-handed (x, y, z) coordinate system. If this coordinate
system is rotated clockwise about y through the angle f sin 2¢, then
the original direction cosines of the ray will be converted to direc-
tion cosines in a geocentrically oriented coordinate system. In this

system, the direction cosines are:

n’ cos (H + 8H) cos (Z + 82)

cos Hcos Z + f sin 2¢ sin H

z
n'y = cos (H + 6H) sin (Z + 6Z) = cos H sin Z (41)
H'X = sin (H + SH) = —-f sin 2$ cos H cos Z + sin H

The corrections SH and §Z are very small, and these equations can be

solved to obtain

8H = -f sin 2¢ cos Z
(42)

82

-f sin 2¢ tan H sin Z

By definition, the arc R from which the tentative values of A, ¢

were computed satisfied the equation
s cos (R+ H) = cos H (43)

This equation is valid on the unit sphere. On the sphere of radius r,

SR will satisfy

scos (R+S6R+H+S8H) = (1 ~f sin2 $) cos (H + SH) (44)
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The two preceding equations can be combined to obtain

_ sin H cos H . 2
o = (1 s sin (R + H)) SH + s sin (R + H) fsin ¢ (45)

For convenience, let

cos H
s sin (R + H)

(46)
sin H
s sin (R + H)

B =

The quantity s sin (R + H) is on the order of the distance from point
S to the intersection, and if s is appreciably larger than the radius
of the earth, both o and B do not exceed about 1/s. With the previous
definition of SH in terms of f,

SR = f [(1 - B) sin 2¢ cos Z + a sin2 ¢] 47)

Assuming that point S is an equatorial point (at latitude zero),
the variables A, ¢, Z, and R are related by

sin A = sin Z sin R
(48)
tan ¢ = ~cos Z tan R
Taking derivatives with respect to R and Z
_cos Zsin R sin Z cos R
8 = cos A 6z + cos A SR
(49)
8¢ = tan A cos ¢ 6Z - coszz SR
cos A

Inserting 6Z from Eq. (42), S8R from Eq. (47) and appending £ sin (2¢)
to 8¢ to convert to geographic latitude, the final equations for the

corrections in this case are
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5\ = £ [(-B cos R+ 1/s) sin 2¢ cos Z + o cos ¢ sin2 ¢] sin 7

cos A

l (50)
f 2 in2 Z cos R 2
§¢ = 5 <B cos® z + = S ) sin 2¢ - o cos Z sin” ¢
cos” A
To evaluate these in terms of A, ¢
-1
R = cos (cos A cos ¢)
Z = tan._1 sin A (51)

-sin ¢ cos A

Values of the corrections are listed in Table 2 as functions of A and
¢. The various corrective terms are all proportional to 1/s so that
for a truly distant point S, the corrections vanish, as they should

since H and Z observations of a star yield the correct geographic co-

ordinates at point P.
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Table 2

LATITUDE AND LONGITUDE CORRECTIONS (ARC-MIN) FOR
INTERSECTIONS DEFINED BY ELEVATION AND AZIMUTH

Longitude
Latitude | 0O 15 30 45 60 75 80
0 0.002  0.00 0.00 0.00 0.00 0.00 0.00
0.00°>  0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.01 0.01 0.01 0.01 0.01
0.30 0.31 0.35 0.43 0.61 1.17 1.75
10 0.00 0.02 0.03 0.04 0.05 0.05 0.05
0.60 0.62 0.69 0.84 1.20 2.31 3.44
15 0.00 0.03 0.06 0.09 0.11 0.11 0.11
0.87 0.90 1.01 1.23 1.75 3.38 5.04
20 0.00 0.06 0.11 0.15 0.18 0.19 0.19
1.12 1.15 1.29 1.58 2.24 4.34 6.48
25 0.00 0.08 0.16 0.22 0.26 0.28 0.29
1.33 1.37 1.53 1.88 2.67 5.18 7.74
30 0.00 0.11 0.21 0.30 0.35 0,38
1.50 1.55 1.74 2.13 3.03 5.88
35 0.00 0.14 0.26 0,37 0.44 0.47
1.63 1.69 1.89 2.33 3.31 6.44
40 0.00 0.16 0.31 0.43 0.51 0.55
1.72 1.79 2.00 2.46 3.51 6.84
45 0.00 0.18 0.34 0.47 0.57 0.61
1.78 1.85 2.07 2.55 3.64 7.10
50 0.00 0.19 0. 36 0.50 0. 60 0.65
1.81 1.88 2.10 2.60 3.71 7.24
55 0.00 0.19 0.36 0.51 0.61
1.81 1.88 2.11 2.60 3.72
60 0.00 0.18 0.35 0.49 0.59
1.80 1.87 2.09 2.59 3.70
65 0.00 0.17 0.32 0.45 0.54
1.78 1.85 2.07 2.56 3.65
70 0.00 0.14 0.28 0.39 0.47
1.76 1.82 2.04 2.52 3.60
75 0.00 0.11 0.22 0.31
1.74 1.80 2.02 2.49
80 0.00 0.08
1.73 1.79

a .
Longitude correction, 6AX.

bLatitude correction, &¢.



